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An Alternative to Cokriging for Situations with
Small Sample Sizes'

K. C. Abbaspour,2 R. Schulin,? M. Th. van Genuchten,’® and
E. Schlippi?

Lack of large datasets in soil protection studies and environmental engineering applications may
deprive these fields of achieving accurate spatial estimates as derived with geostatistical techniques.
A new estimation procedure, with the acronym Co_Est, is presented for situations involving primary
and secondary datasets of sizes generally considered 100 small Jor geostatistical applications. For
these situations, we suggest the transformation of the secondary dataset into the primary one using
pedotransfer functions. The transformation will generate a larger set of the primary data which
subsequently can be used in geostatistical analyses. The Co_Est procedure has provisions for
handling measurement errors in the primary data, estimation errors in the converted secondary
data, and uncertainty in the geostatistical parameters. Two different examples were used to dem-
onstrate the applicability of Co_Est. The first example involves estimation of hydraulic conductivity
random fields using 42 measured data and 258 values estimated Jfrom borehole profile descriptions.
The second example consists of estimating chromium concentrations Sfrom 50 measured chromium
data and 150 values estimated from a relationship between chromium and copper concentrations.
The examples indicate that in situations where the size of the primary data is small, Co_Est can
produce estimates which are comparable to cokriging estimates.

KEY WORDS: cokriging, small sample size, pedotransfer functions, geostatistics, parameter un-
certa:imyv measurement error.

INTRODUCTION

Practical applications of geostatistical techniques to environmental studies and
engineering projects have at times met with limited success, often because of
small sample sizes. The nature of information in environmental studies, which
may include the fields of soil protection, water resources management, hydro-
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geology, geotechnical engineering, and environmental engineering, has features
which are often very distinct from that used in mining applications. Some of
these features are: (1) most environmental data exhibit spatial or temporal
autocorrelation; using this information in the autocorrelation function leads to
more efficient use of available data (e.g., Abbaspour et al., 1996); (2) environ-
mental data exhibit natural heterogeneity, a feature which should be preserved
in any realistic analysis; (3) geostatistical parameters (i.e., mean, variance,
range, nugget, and shape of the autocorrelation structure) in environmental stud-
ies are almost always uncertain; ignoring parameter uncertainty may lead to
severe underdesigns in many projects (e.g., Abbaspour and others, 1996); (4)
measured data in environmental applications usually contain nonnegligible mea-
surement errors which should be accounted for; (5) collection of a large amount
of data is often not feasible because of cost, time constraints, and the destructive
nature of data collection techniques; (6) collected data are usually not the end
product, but are used often as input to sophisticated simulation programs where
the different uncertainties and errors in them can further propagate; and (7)
different types of data are usually available with each type often having only a
limited quantity of data. Realistic environmental applications require estimation
procedures which account for all of the above special features.

In response to the above situation, procedures such as cokriging (Wack-
ernagel, 1988; Myers, 1982, 1984; Journel and Huijbregts, 1978), indicator
kriging (Journel, 1983), indicator cokriging (Deutsch and Journel, 1992), soft
kriging (Alabert, 1987; Journel, 1986), and other methods (see Deutsch and
Journel, 1992) were developed to provide better estimates of a primary variable
using one or more auxiliary variables. A common drawback of all of these
procedures is that inference becomes extremely demanding as the number of
variables increases. For example, a two-variable cokriging approach requires a
semivariogram for each variable and a cross-semivariogram, while for three
variables we need a semivariogram for each variable plus three cross-semi-
variograms, and so on. The above techniques improve estimations by including
auxiliary or soft data, but the main problem of having a small sample size is
not alleviated in any way. Furthermore, although some workers have focused
on the 1ssue of measurement errors (Royer, 1989; Cressie, 1986) and parameter
uncertainty (Cui, Stein, and Myers, 1995; Kitanidis, 1986), most available geo-
statistical programs do not have provision for taking either measurement errors
or parameter uncertainty into account, and hence are of limited use for practical
environmental applications.

The objective of this paper is to demonstrate a new approach, referred to
as Co_Est, where auxiliary data are transformed into estimated primary data.
Combining estimated and measured primary data generates a larger dataset which
can then be used in kriging-type estimation applications. Regardless of the num-
ber of auxiliary variables, the procedure only needs to determine one semi-
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variogram on the basis of the larger primary dataset. Each data point in the
larger set is assumed to have an error. For measured primary data, this is the
measurement error, and for estimated primary data, this becomes the estimation
error. Estimated values and associated estimation errors can be provided by
pedotransfer functions. Pedotransfer functions (PTFs) are regression equations
or models which relate hard-to-measure field properties to more basic, and gen-
erally more easily-measured properties. Literature abounds with such equations
which have been derived for different properties (e.g., Batjes, 1996; Salchow,
Fausey, and Ward, 1996, Wosten, Finke, and Jansen, 1995; Abbaspour and
Moon, 1992). The following are some of the scenarios that can conceivably use
Co_Est: (1) If there are only a limited number of primary data, but reasonably
more secondary data, some of which are collocated with the primary data, then
a local pedotransfer function can be modeled on the basis of collocated data.
The model can then be used to estimate values of the primary data at locations
for which sccondary data, but not primary data are available. (2) The same as
the above situation, but with too few collocated primary and secondary data to
establish a meaningful correlation; in this case pedotransfer functions from the
literature can be calibrated for local conditions on the basis of the available data,
and used to generate values of the primary parameter. (3) If there are no data
on the primary parameter, but only different types of secondary parameters, then
pedotransfer functions from the literature must be used to transfer secondary
parameters into the primary parameter, with subsequent use of Co_Est to obtain
an improved estimation for the primary parameter. We note that Co_Est also
provides capabilities to treat geostatistical parameters (i.e., mean, variance,
nugget, range, and shape of the semivariogram) as uncertain random variables.
This feature allows analysis of parameter uncertainty, which is inherently as-
sociated with semivariogram modeling. Finally, Co Est should not be consid-
ered as an alternative to cokriging if enough data are available to infer a reliable
coregionalization model. Rather, Co_Est is being proposed as an alternative to
a nonspatial data analysis.

THEORETICAL BACKGROUND

If a local pedotransfer function is being developed, the first step is to
establish a relationship between a primary variable, Z, and ¢ auxiliary variables,
Y\, Y5, Y, using n collocated measured values, in the form of

t

zjzﬁo+i§ﬁiy,j+ej j=1,2,...,n ()

where 8, and B;s are regression constants, and €, is a random variable with
mean zero and variance o> (Draper and Smith, 1981). The value of ¢2 can be



262 Abbaspour, Schulin, van Génluchten, and Schldppi

estimated by S2 vi.va. ...y, the residual mean square which is the variance of Z
after taking into account the dependence of Zon Y,, Y,, ..., ¥, (Zar, 1984).

In the second step, Equation (1) is used to obtain predictions, Z, of Z, at
m locations for which measured values of Y;, but not of Z, are available. For a
given set of Y, the predicted point, Z,, will have a variance given by the
following expression (Zar, 1984):

t
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where L ¥ y;y, are known as corrected sums of products, and c;, is an inverted
matrix of sums of square and sums of products (for more details see Zar, 1984,

Chap. 20). For a situation with only one auxiliary (independent) variable, Y,
expression (2) reduces to
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The above two steps result in a set of n values of Z with errors equal to
measurement errors, augmented by a set of m values of Z with errors equal to
the estimation errors for a total of m + n = p values.

In the third step, the combined set of measured and estimated Z values arc
used to model the semivariogram or covariance function for the primary variable.
Assuming second-order stationarity, the two spatial measures are related by

Ch) = @, — y(h) &)

where @ is the variance of the random process, v is the semivariogram, C is
the covariance function, and # is the lag.

In the fourth step, a set of linear measurement relations (Bryson and Ho,
1975) is invoked to estimate a k-component state vector X given a p-component
array of known Z values containing random errors €, where usually &k >> p.
The problem is defined as follows:

Z} = [H{X} + {¢} (6)

where [H] = (p X k) matrix of regression cocflicients, {e} = (p X 1) vector
of zero-mean measurement errors, and [R] = (p X p) matrix of covariances for
random errors {e}. Following the application of a Bayesian solution (for details
see Bryson and Ho, 1975, Chap. 12), the above procedure leads to conditionally
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posterior (superscript ¢p) estimated values as follows:
(W = W'} + [CUHAHICIH" + RDT'(Z) = (Hw'Y) (D)
[C1? = [C] = [CIUHI(HIICHH]" + [R)™'[HIC] (8)

where {u'} = (k X 1) array of prior estimates of the states and [C] = (k X k)
covariance matrix of the state variable. Equations (7) and (8) were also used by
Massmann and Freeze (1987) to obtain conditional hydraulic conductivity fields.
They are mathematically equivalent but not quite the same as the simple kriging
estimator commonly used in geostatistics. In the simple kriging estimator, the
theoretical mean must be used, whereas the measurement relations above allow
for the use of subjective prior estimates.

Uncertainty Analysis

Co_Est provides the option to invoke an uncertainty analysis. Such an
analysis requires that all uncertain geostatistical parameters be depicted proba-
bilistically. A worst-case scenario, in terms of data availability, would be to
treat each uncertain parameter as having a uniform distribution within a given
interval. All geostatistical parameters, i.e., mean (u), variance (@), nugget (v),
range (p), and shape (s), can be treated in this manner. The variable shape can
be thought of as being one of s possible semivariograms [spherical, circular,
exponential, . . .]. Another possible probabilistic approach is to treat the mean
and variance of a random process as having a joint normal-gamma distribution,
but independent of the nugget and range, which in turn are depicted by simple
uniform distributions. Based on our experience, the latter model works well for
hydraulic conductivity. The normal-gamma joint distribution for mean and vari-
ance is represented by three parameters, i.e., mean, variance, and an equivalent
prior sample size n' (Benjamin and Cornell, 1970). It is usually possible in a
particular problem to find a normal-gamma distribution which approximates
reasonably well an experimenter’s actual prior distribution of the mean and
variance (DeGroot, 1975). Having treated parameters in the geostatistical model
as random, estimates of state variables have compound distributions (Benjamin
and Cornell, 1970) with parameters which are in turn random variables. These
type of distributions are referred to as Bayesian distributions of X, and are
defined as

i) = Sfx(xw)fo(@) df ©)

where fy (x|0) is a model distribution of X, and f,(f) contains information about
the parameters. A Baycsian distribution can be interpreted as being a weighted
average of all possible distributions fy(x|6) which are associated with different
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values of §. We note that the unknown parameters do not appear in f%(x) because
they have been integrated out of the equation, and also that f%(x) accounts for
both spatial heterogeneity and statistical uncertainty.

To propagate uncertainty in the parameters through Equations (7) and (8),
a procedure referred to here as exhaustive stratified sampling was employed.
From the earlier discussion of the joint distribution of the mean and variance,
it follows that the marginal distribution of variance is chi-squared, while the
conditional distribution of u, f(u|®) is normal. A series of N, Nye» N,, N,
and N; equally likely realizations of ®, u|®, », p, and s, respectively, were
selected. State variables X were consequently simulated for each combination
of the Ny, N, N,, N,, and N; realizations, for a total of N; equally likely
realizations, Ny = Ng, X N, X N, X N, X N,. From these runs the following
statistics were calculated: E(x), Var(y), E(®), and Var(®).

Realizations of @ were made by dividing the cumulative chi-squared scale
range (from O to 1) into Ng equally sized classes (Fig. 1). Realizations of
p|® were obtained by similarly dividing the cumulative normal distribution scale
range of f(u|®) into N, @ equally sized classes. Realizations of p and v were
generated by dividing the interval between p,,;, and p,, and v, to »,,, into
N, and N, equally sized classes, respectively. In each situation, the first moment
of each interval (dashed lines in Fig. 1) was taken to represent that interval.
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Figure 1. Division of a distributed parameter into equally-sized strata for ex-
haustive stratified sampling. Dashed lines locate the first moments of the strata.
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EXAMPLES AND CO_EST RESULTS

Example 1: Saturated Hydraulic Conductivity of a Landfill Site

The first example involved a landfill site near Aarau, Switzerland. The
landfill was used as a toxic waste repository and lies in a former clay pit ex-
cavated in aquitanian fresh water molasse. The molasse is composed primarily
of marls and variegated clays interlayered with sandstone banks (Martinson,
1994). The site contained approximately 60 boreholes which had been drilled
between 1970 and 1990 in an area of 800 m by 600 m (Fig. 2). Most boreholes
were drilled to a depth of 30 m. Detailed lithologic descriptions were made for
all boreholes (Fig. 3). Hydraulic conductivities were measured at several dif-
ferent depths in 17 boreholes, giving a total of 42 hard data points. Measure-
ments were made over average vertical distances of 3 m using a double-packered
technique. A frequency distribution of the hard conductivity data is shown in
Figure 4a.

Borcholes with detailed profile descriptions were divided into 3 m intervals
amounting to 298 sections. Of these, 42 sections were collocated with those for
which hydraulic conductivities had been measured. The resulting set was used
to establish the following relationship between hydraulic conductivity and
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Figure 2. Location of data points in and around the landfill considered for example
1. The numbers indicate the number of measured data in the vertical direction.
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depth (m)
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Figure 3. A typical segment of a chart used for profile
description of a borehole.

borehole profile information (for more details of the regression procedure, see
Abbaspour and Moon, 1992):

7= —logK = 6.59 + 1.48 FS — 1.30 MS + 1.35 SN — 1.36 CC
— 1.43 CRI + 1.16 CY1 - (0.79 CR2 ' (10)

in which variables are defined as: FS = 1 if texture is finc sandstone, =
otherwise, MS = 1 if texture is medium sandstone, = 0O otherwise, SN = 1 if
texture 1is siltstone, = 0 otherwise, CC =1 if sandstone contains carbonate, =
~1 1f it does not, = O if texture is not sandstone, CR1 = 1 if fine sandstone
is crumbly, = O otherwise, CY1 = 1 if fine sandstone is clayey, = 0 otherwise,
and CR2 = 1 if medium sandstone is crumbly, = 0 otherwise. Equation (10)
yielded a model correlation coefficient of 0.82, a standard error of estimation
of 0.82, and a cross-validation correlation coefficient of 0.73. Figure 4a provides
pertinent statistics for hard and soft datasets in this example. The correlation
coeflicient between hard and soft data generated by Equation (10) is significant,
indicating a meaningful contribution from the borehole profile information to
the estimation process. Using Equation (10), soft hydraulic conductivity data
were calculated for the remaining 256 borehole sections.
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A

Figure d. A, pertinent statistics for the hard and soft data; and B, semivariograms
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used in the co-kriging and Co_Est estimations for example 1.
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Next, we modeled four structure functions for use in Co_Est and cokriging
as illustrated in Figure 4b. For each structure function, the two North-South
and East-West directions with tolerances +22.5° and the omnidirectional curve
(0° + 90°) were considered (only the omnidirectional direction is shown in
Figure 4b along with the model fit). For cokriging we modeled two semivario-
grams for hard (y,) and soft (ys) data and one cross-semivariogram () by
the linear model of coregionalization given in Equation 11. For Co_Est we only
need one semivariogram and the model v, in Equation 12 was inferred on the
basis of experimental semivariograms calculated using the combined 42 hard
and 256 soft data points.

yu(h) = 0.9 + 0.7Sph(h/100)
ys(h) = 0.9 + 0.5Sph(k/100) (an
vus(h) = 0.8 -+ 0.5Sph(h/100)

vz = 1.0 + 0.7Sph(h/500) (12)
where
h h
1.5- - 0.5 (—>3, if0<h=op
Sph(h/p) = p p (13)
1, ifh > p

where /i is the lag distance, and p is the range parameter. The determinants of
the nugget coeflicients and the spherical structure factors are positive, which
indicates the model in Equation 11 is legitimate. Experimental semivariograms
for hard and soft datasets based on 42 data points are very noisy (Figure 4b).
This phenomenon is mostly due to the small number of pairs. On the other
hand, the experimental semivariogram based on the complete set of 298 (42
measured plus 256 estimated from borehole descriptive variables) values for the
logarithm of hydraulic conductivity is much better defined. The programs in
GSLIB (Deutsch and Journel, 1992) were used to obtain semivariograms and to
perform cokriging estimation. Measurement errors in this and the next example
were set to zero as cokriging routines generally do not have any provisions for
taking these errors into account.

Co_Est and cokriging were used to estimate a set of 42 data points by
cross-validation, and compared these to the 42 measured data. Comparisons
between the measured and estimated data were obtained by calculating the root
mean square error (RMSE) to show the closeness of the two datasets, by de-
termining the coefficient of correlation to show linear correlation between the
two datasets, and by calculating the average estimation (kriging) variance to
show the effect of data configuration.
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Table 1. Comparison of Estimation Results Obtained with Cokriging and Co_Est (Example 1)

Co_Est with

Measured Cokriging Co_Est uncertainty
Statistics —logK results results analysis
Number of samples 42 42 42 5000 fields of 42
points

Mean, uz (ms~'), and its 6.48 6.61 6.60 6.51

variance ( } 0.047)
Variance, @, and its 1.59 0.51 0.39 1.57

variance ( ) ©0.16)
Average estimation error, — 1.12 1.10 —

@, and its variance () (0.002) (0.0001) —
Root mean square error — 1.25 1.10 —
Correlation coefficient — 0.31 0.50 —

Results obtained with the Co_Est and cokriging runs are compared in Table
1. As expected, the mean of the random process, u, is estimated relatively
closely by both procedures. As is typical of linear estimation procedures, the
variance of the random process, or the system heterogeneity, &, is not con-
served. The estimation (kriging) variance, @, is a measure of the data config-
uration, and not of the local accuracy at a specific location, because @y does
not depend on the actual data value (Journel, 1987). Because co-kriging and
Co_Est both use the same hard and soft data configuration, estimation error is
aimost the same. Moreover, the RMSE and correlation coeflicient in this situ-
ation are significantly better for Co_Est than for cokriging.

To alleviate the smoothing effects of linear estimation procedures, different
stochastic simulation algorithms have been proposed (see Deutsch and Journel,
1992 for a comprehensive list). The Co_Est algorithm is particularly suited for
simulation purposes and uncertainty analyses, since this method can consider
all spatial parameters, i.e., mean, variance, nugget, range, and shape of the
spatial structure, as being uncertain variables. Parameter uncertainties can then
be propagated through a stochastic simulation model by drawing alternative,
equally likely, and conditioned joint realizations of the random variables. In this
example, the parameter uncertainty analysis option of Co_Est was invoked.

The mean and variance of the 42 measured —logK values were 6.48 and
1.59, respectively. The local geologists’ prior belief was that the mean of the
saturated hydraulic conductivity in a fresh water molasse zone typically found
in Switzerland should be about twice as likely to lie inside the range 6.48 +
1.0 than outside this range. This information suggested that the parameter »'
(equivalent prior sample size) (Benjamin and Cornell, 1970) of the joint normal-
gamma conjugate prior distribution should be taken as about 13. In consultation
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with local geologists, we decided to set the interval for the uncertainty in the
nugget, v, to [0.5, 1.5] and for the range, p, to [0.0, 1000]. By setting N,q
and Ny to 10, N, and N, to 5, and N, to 2, (i.e., s = [spherical, exponential])
we hence obtained a sample space consisting of 5000 sets of parameters. Con-
sequently, a total of 5000 realizations of the hydraulic conductivities were made
at each of the 42 data locations. These realizations provided a numeric solution
to the Bayesian distribution of Equation (9) for both the mean and the variance
of the random process. After obtaining the cumulative distribution of both the
mean and the variance of z, we again invoked the exhaustive stratified sampling
procedure to obtain a set of 100 simulated Z values at each of the 42 points.
Results of the uncertainty run are also summarized in Table 1, where statistics
are based on 100 realizations. Here the variance of the random process is much
larger than for the two estimation methods because of propagation of parameter
uncertainties. Implications of this result are twofold. First, uncertainty in pa-
rameters in environmental projects does not need to be a hindrance for analysis.
If properly quantified and propagated, parameter uncertainty can alleviate the
often unrealistic and undesirable smoothing effect of traditional estimation pro-
cedures. Second, ignoring parameter uncertainty in light of its large effect on
the variance may not be justifiable in practical environmental applications. It
was shown elsewhere (Abbaspour and others, 1996) that ignoring parameter
uncertainty can lead to severc underdesigns in geotechnical projects.

Example 2: Chromium Concentration in an Industrial Region

The second dataset consists of chromium and copper concentrations mea-
sured in the top (0-20) cm depth of an industrial region near Zurich, Switzer-
land. The primary variable in this example is chromium concentration, of which
120 measured points were available. The secondary data variable is concentra-
tion of copper, with 200 measurements being available, out of which 50 were
collocated with chromium. The 50 collocated chromium and copper concentra-
tions were used to establish the following pedotransfer function:

logCr = 1.88 + 0.45 Cu'” (14)

Equation (14) yielded a model correlation coeflicient of 0.81, and a standard
error of estimation equal to 0.155. Figure 5a provides pertinent statistics for the
two datasets of this example.

The remaining 150 copper data were used as soft data for estimation by
cokriging, and also used to obtain estimated (soft) logCr data using the rela-
tionship in Equation 14 for estimation by Co_Est. The remaining 70 chromium
data were retained for testing the estimates made by cokriging and Co_Est. As
in the previous example, four structure functions were modeled as illustrated in
Figure 5b, where only the omnidirectional experimental cases are shown along



An Alternative to Cokriging

A

14

Count

2628 29 303233 34363738

Comparison of Cr and collocated Cu a

Count

2022 2426 28 3032 34 36 38

logCr Cube root of Cu
logCr Summary statistics: -
35 + + + + statistics Cr Cu
g+
-+ . data 50 50
I
) + mean 3.15 2.83
2.5 * ;
variance 0.068 0.22
1 11 coirelation coefficient 0.81
1.5 T T T v standard error of estimation 0.155
15 25 35
Cube root of Cu

B Semivariograms of example 2 b
0 16— Semivariogram of 50 Cr Semivariogram of 50 Cu
- 4 Variogram + aw‘ Variogram +
0.124
i +
0.084 + + T +
§ ++ +
0.‘04-+# +++
- +
Q T T T T T 0 T N T ¥
0 1000 2000 000 ¢ 1000 2000
Distance Distance (m)
Cross-semivariogramn of 50 Cr-Cu Semivariogram of 200 Cr
6 0.09
_| Variogram + { Variogram + 4+
0.074 + ax
0.05
0.034
o T 1800 ’ 2000 oot ’ 1000 ’ 2000
Distance {m) Distance (m)

Figure 5. A, pertinent statistics for the hard and soft data; and B, the semivario-

grams used in the co-kriging and Co_Est estimations for example 2.
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with model fits. One semivariogram, v,, was modeled based on the combined
50 hard plus 150 soft chromium data for use in Co_Est (Eq. 15); two semiva-
riograms, vy, and y,, were modeled based on sets of 50 measured Cr and Cu
data, respectively; and one cross-semivariogram, vy ,.c,, was modeled based on
the 50 measured Cr and Cu data (Eq. 16).

¥4 = 0.011 + 0.06Sph(h/2000) (15)

Yo th) = 0.029 + 0.059Sph(h/1800)
vedh) = 16.7 + 174.35ph(h/1800) (16)
Yercuh) = 0.252 + 2.948Sph(h/1800)

where the Sph() function is defined in Equation 13. Determinants of the nugget
coeflicients and the spherical structure factors are positive, indicating that the
linear model of coregionalization in Equation 16 is also legitimate. As in the
previous example, experimental semivariograms for Cr and Cu which are based
on 50 data points are noisy, a phenomenon mostly due to the small number of
pairs. By comparison, the experimental semivariogram based on the set of 200
chromium (50 measured data plus 150 data estimated from copper) data points
is much better defined. Table 2 shows how well cokriging and Co_Est were
able to estimate the 70 measured logCr concentrations. As in the previous ex-
ample, the mean of chromium concentrations obtained with the two procedures
were very close, whereas the variance was considerably underestimated. The
average estimation (kriging) variance was much smaller with Co_Est, primarily
because of the considerably smaller nugget and sill of the Co Est semivario-
gram. Estimation based on Co_Est in this example also provided a smaller value
of RMSE. Values of the correlation coefficient for cokriging and Co Est were
almost identical. Both examples suggest that the precision obtained by a better

Table 2. Comparison of Estimation Results Obtained with Cokriging and Co_Est (Example 2)

Cokriging Co_Est estimation
Statistics Measured logCr estimation results results

Number of samples 70 70 70
Mean, p (mg kg ™) 3.2 3.34 3.17
Variance, @, 0.083 0.050 0.038
Average estimation error, @y, — 0.042 0.022

and its variance ( ) (3.4E-5) (2.4E-5)
Root mean square error — 0.24 0.19

Correlation coeflicient — 0.74 0.75




An Alternative to Cokriging 273

semivariogram because of a larger number of data points in Co_Est, more than
offsets the additional errors associated with the use of soft auxiliary data.

CONCLUSIONS

Use of a new procedure, Co_Est, for spatial estimation was considered for
situations which are amenable to cokriging, but have an insufficient number of
samples to make optimai use of geostatistics. Different types of data were cor-
related through regression analysis, and combined to form a larger set of data
for the primary variable. Co_Est reduced to one the number of semivariograms
needed for estimation, i.e., that of the primary variable only. Co Est is also
capable of performing stochastic simulation with uncertain parameters. Two
very different examples were considered so as to illustrate use of Co_Est. For
both examples, improvements could be made in the estimation process with
Co_Est as compared to the traditional cokriging. Variance of a random process
can be very much influenced by parameter uncertainty. This feature can have
important implications in actual environmental applications. In conclusion, when
the size of the primary data is too small to perform traditional geostatistical
analyses, Co_Est can provide improved estimations. Co_Est is particularly use-
ful for stochastic simulations if parameter uncertainty is to be considered.
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